
Abstract. The sensory weighting model is a general
model of sensory integration that consists of three
processing layers. First, each sensor provides the central
nervous system (CNS) with information regarding a
specific physical variable. Due to sensor dynamics, this
measure is only reliable for the frequency range over
which the sensor is accurate. Therefore, we hypothesize
that the CNS improves on the reliability of the individ-
ual sensor outside this frequency range by using infor-
mation from other sensors, a process referred to as
‘‘frequency completion.’’ Frequency completion uses
internal models of sensory dynamics. This ‘‘improved’’
sensory signal is designated as the ‘‘sensory estimate’’ of
the physical variable. Second, before being combined,
information with different physical meanings is first
transformed into a common representation; sensory
estimates are converted to intermediate estimates. This
conversion uses internal models of body dynamics and
physical relationships. Third, several sensory systems
may provide information about the same physical
variable (e.g., semicircular canals and vision both
measure self-rotation). Therefore, we hypothesize that
the ‘‘central estimate’’ of a physical variable is computed
as a weighted sum of all available intermediate estimates
of this physical variable, a process referred to as
‘‘multicue weighted averaging.’’ The resulting central
estimate is fed back to the first two layers. The sensory
weighting model is applied to three-dimensional (3D)
visual–vestibular interactions and their associated eye
movements and perceptual responses. The model inputs
are 3D angular and translational stimuli. The sensory
inputs are the 3D sensory signals coming from the
semicircular canals, otolith organs, and the visual
system. The angular and translational components of
visual movement are assumed to be available as separate
stimuli measured by the visual system using retinal slip
and image deformation. In addition, both tonic (‘‘reg-
ular’’) and phasic (‘‘irregular’’) otolithic afferents are
implemented. Whereas neither tonic nor phasic otolithic
afferents distinguish gravity from linear acceleration, the

model uses tonic afferents to estimate gravity and phasic
afferents to estimate linear acceleration. The model
outputs are the internal estimates of physical motion
variables and 3D slow-phase eye movements. The model
also includes a smooth pursuit module. The model
matches eye responses and perceptual effects measured
during various motion paradigms in darkness (e.g.,
centered and eccentric yaw rotation about an earth-
vertical axis, yaw rotation about an earth-horizontal
axis) and with visual cues (e.g., stabilized visual stimu-
lation or optokinetic stimulation).

1 Introduction

Body movements stimulate sense organs, yielding sen-
sory signals (e.g., signals from the semicircular canals,
otolith organs and visual system) that encode motion
and orientation. Despite limitations due to sensor
dynamics and neural ‘‘noise’’, the central nervous system
(CNS) is capable of accurately estimating motion and
orientation under most conditions, a process referred to
as multisensory integration. These various estimates of
motion and orientation are then utilized, with additional
motor and cognitive processing, to elicit reflexive and
perceptual responses.
To stabilize the image of the external world on the

retina, the CNS principally utilizes sensory signals
coming from the vestibular (i.e., semicircular canals and
otolith organs) and visual systems to elicit compensatory
reflexive eye movements. By use of vestibular informa-
tion, the vestibulo-ocular reflexes (VOR) help stabilize
the image of the external world on the retina in response
to head movements. By use of visual information, the
optokinetic reflexes help stabilize the image of the ex-
ternal world on the retina in response to movements of
the visual surround.
In this paper, we will model physical and physiolog-

ical phenomena with mathematical tools. We attempt to
describe reality with this model but do not confuseCorrespondence to: L. H. Zupan
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model and reality. However, we do explicitly hypothe-
size that the CNS implements neural processes between
groups of neurons equivalent to mathematical opera-
tions between central estimates of physical variables.
This paper presents a general model of human mul-

tisensory integration, the ‘‘sensory weighting’’ model,
that unifies various previous approaches in a single
model: feedback-loop control (Hain 1986; Robinson
1977; Schmid et al. 1980, 1979), ‘‘velocity storage inte-
grator’’ (Raphan and Sturm 1991; Raphan et al. 1977;
Wearne et al. 1999), ‘‘observer’’ (Glasauer 1992, 1993;
Glasauer and Merfeld 1997; Merfeld 1990, 1995a;
Merfeld et al. 1993a; Oman 1982), and ‘‘coherence
constraint’’ (Droulez and Darlot 1989; Zupan 1995;
Zupan et al. 1994) models. The sensory weighting model
consists of three processing layers:

1. Frequency completion. The resulting sensory estimate
is improved with respect to the sensor output by using
an internal estimate, which is ideally accurate in the
absence of noise and thus provides the missing in-
formation. Frequency completion uses internal mod-
els1 of sensor dynamics.

2. Conversion of sensory estimates to intermediates esti-
mates. Information with different physical meanings
is transformed into a common representation (e.g.,
information about change of gravity is transformed
into angular velocity). These transformations use in-
ternal models of physical relationships.

3. Multicue weighted averaging of the intermediate
estimates. Weighted averaging is a Bayesian maxi-
mum-likelihood estimate with each weight being
proportional to the inverse variance of the respective
intermediate estimate. Thus, the free parameters of
the model are mainly determined by the assumed
variances of the respective intermediate estimates.
The resulting central estimate is fed back to the first
two layers.

Steps 1 and 2 are both necessary prerequisites for the
weighted averaging. Frequency completion has to be
performed to overcome the different sensor characteris-
tics which would prohibit the use of weighted averaging
(e.g., a low-pass-filtered estimate and a high-pass-filtered
estimate of the same physical variable cannot be fused
by weighted averaging). Conversion of sensory estimates
to intermediate estimates is necessary since only vari-
ables having the same dimension can be fused by
weighted averaging (e.g., a gravity estimate cannot be
fused with an angular velocity estimate).
Internal models of sensory dynamics, body dynamics

and physical relationships were also included in previous
models of sensory integration (Droulez and Darlot 1989;
Glasauer 1992, 1993; Glasauer and Merfeld 1997;

Merfeld 1990, 1995a,b; Merfeld et al. 1993a; Zupan
1995) and motor control (Darlot et al. 1996; Kawato
et al. 1987; Wolpert et al. 1995; Zupan 1995). But the
‘‘sensory weighting’’ model of visual–vestibular interac-
tions is innovative and original when compared to pre-
vious approaches. First, the sensory weighting model
implements visual–vestibular interactions while observer
models have been limited to vestibular interactions.
Second, the sensory weighting model implements an ef-
ference copy of the eye motor command similarly to the
coherence constraint model (Droulez and Darlot 1989),
as originally suggested by Von Holst and Mittelstaedt
(1950). Third, whereas neither tonic (‘‘regular’’) nor
phasic (‘‘irregular’’) otolithic afferents distinguish grav-
ity from linear acceleration (Anderson et al. 1978;
Fernandez and Goldberg 1976a; Loe et al. 1973), the
model uses tonic afferent signals to estimate gravity, and
phasic afferent signals to estimate linear acceleration, as
previously suggested (Droulez and Darlot 1989; Mayne
1974; Young and Meiry 1968). Fourth, the sensory
weighting model implements an idiotropic vector
(Mittelstaedt 1983) to help estimate head orientation
and motion.

2 Model description

2.1 Background and development

The sensory weighting model consists of three process-
ing layers and proposes a solution to the problem of
how the central (CNS) integrates sensory information
from disparate sensory modalities to estimate body
motion and spatial orientation. The sensory weighting
model is the mathematical implementation of three
hypotheses. First, we hypothesize that a physical
variable is represented by two types of estimates in the
CNS: a sensory estimate and a central estimate. Second,
we hypothesize that internal models of sensory dynam-
ics, body dynamics and physical relationships are
implemented in the CNS to help calculate these two
estimates of physical variables. Third, we hypothesize
that the central estimate of a physical variable is
computed by ‘‘multicue weighted averaging’’ of avail-
able sensory information. The basis for these hypotheses
is presented in Sect. 4.

2.2 The physical variables

In the sensory weighting model, physical variables are
represented by three-dimensional (3D) vectors in a right-
handed orthogonal head-fixed frame of reference (x, y,
z) where the x-, y-, and z-axes are the naso-occipital,
interaural and rostrocaudal axes with positive values
forward, to the left, and to the top of the head,
respectively. For rotation, the x-, y-, and z-axes repre-
sent roll, pitch, and yaw rotations with positive values
clockwise, downward, and to the left, respectively.
Similarly, internal estimates of physical variables are

expressed in head-fixed frames of reference, as observed

1An internal model mimics a physical process (e.g., sensory dy-
namics, body dynamics, and the relationship between physical
variables). If this physical process can be described by a mathe-
matical operation between physical variables, an internal model
really signifies that a neural process equivalent to this mathematical
operation may occur within the groups of neurons that encode the
internal estimates of these physical variables.

210



experimentally in several species (Graf et al. 1988;
Krapp and Hengstenberg 1996; Wylie et al. 1998; Wylie
and Frost 1993). 3D physical variables2 considered are
the head angular velocity x, eye angular velocity in
space r, eye angular velocity in head e, specific gravito-
inertial force f , gravity g, head linear acceleration a, and
head linear velocity v. To define optokinetic stimuli, we
consider the angular (rv) and linear (vv) velocities of the
vzisual surround in space in a space-fixed frame of
reference.
The vestibular system is composed of the semicircular

canals and otolith organs. The semicircular canals
measure head angular velocity x in a head-fixed frame
of reference. The otolith organs, innervated by both
tonic (‘‘regular’’) and phasic (‘‘irregular’’) otolithic
afferents, measure the specific gravito-inertial force3 f in
a head-fixed frame of reference.
The study of the central processing that separates

angular and translational information from visual flow
is not central to this paper. Therefore, we assume for
simplification that the visually estimated eye angular
velocity in space (re) and head linear velocity in space
(ve) are available as independent inputs (Droulez and
Darlot 1989). (For details on optic flow processing, see
Droulez and Cornilleau-Pérès (1993) and Simpson
(1984).) The visually estimated eye angular velocity in
space re is chosen opposite the retinal slip and the vi-
sually estimated head linear velocity in space ve results
from the processing of image deformation. Finally, a
measure of the eye angular velocity in head e is available
to the CNS as an efference copy êeM of the motor order
eM sent to the motoneurons innervating the eye muscles,
as suggested by Von Holst and Mittelstaedt (1950).
Sensor and effector implementation is detailed in Ap-
pendix A.
During head rotation, a simple set of equations de-

scribes body dynamics and physical relationships that
link the various physical variables in the head-fixed
frame of reference:

dg=dt ¼ g� x ð1Þ

r ¼ x þ e ð2Þ

dv=dt ¼ a� x � v ð3Þ

f ¼ g� a ð4Þ

where � designates the cross product of two vectors.
Equations (1) and (3) are first-order differential
equations that model the influence of head angular
velocity x on the relative orientation of gravity g, head
translatory acceleration a, and head translatory veloc-
ity v. Note that the systems described by (1) and (3)
with x as input and g or v as output are non-linear
systems, since linear superposition does not hold for
the responses to two arbitrary inputs x. Integration of
these two equations is performed with initial values
corresponding to head orientation and motion at the
beginning of a simulation. (For similar differential
equations between neural estimates, estimates of head
orientation and motion at the beginning of a simula-
tion are used for initial values.) These two equations
were obtained directly from the mathematical relation-
ship between time derivative operators in a moving
(head) and fixed (external world) frames of reference
(Spiegel 1972). For example, (1) mathematically de-
scribes how gravity is pitched forward in a head-fixed
frame of reference when the head is pitched forward.
As an approximation, head and eye rotation axes are
considered identical, leading to the simple relationship
(2). Finally, as stated by Einstein’s equivalence prin-
ciple, linear accelerometers like the otolith organs
cannot distinguish gravity g from head linear acceler-
ation a, but measure the gravito-inertial force f
defined by (4).

2.3 A simple case: two sensors

In the Laplace frequency domain, a physical variable x1
is measured by a sensor whose dynamics can be
characterized by a transfer function matrix T1ðsÞ where
s is the standard Laplace variable (Hildebrand 1976).
While measured by one sensor, the physical variable x1
may also be estimated using other available sensory
information correlated with x1. For example, semicircu-
lar canals do not accurately measure head angular
velocity at low frequencies (<0.05 Hz). Therefore, to
compute an estimate of head angular velocity over a
broader frequency range, the CNS may also use visual
information that principally contains low-frequency
information. This has been confirmed by neural record-
ings (Fredrickson and Schwartz 1979; Waespe and Henn
1977, 1979) and illusory sensations of self-rotation
(Dichgans et al. 1972).
The sensory weighting hypothesis states that the CNS

uses all available sensory information to compute a
central estimate x̂x1 of the physical variable x1. Figure 1
describes how the CNS computes a sensory estimate ~xx1
and a central estimate x̂x1 of the physical variable x1 (e.g.,
head angular velocity) given two sensory inputs (e.g.,
semicircular canal and visual inputs):

~xx1 � T1x1 þ I� T̂T1
� �

x̂x1 �Ax1;1 ð5Þ

x̂x1 � W 1;1Ax1;1 þ W 1;2Ax1;2 ð6Þ

2Since all variables are expressed in a head-fixed frame of refer-
ence, some variables may be independent of head orientation. For
example, yaw head angular velocity x is always aligned with the
head z-axis during a yaw rotation about either an earth-vertical or
earth-horizontal axis.
3 For a gravito-inertial force F acting on a body of mass m, the
specific gravito-inertial force f ¼ F =m corresponds to the gravito-
inertial force normalized by the mass m. The specific gravito-iner-
tial force f is the sum of the specific gravitational (g) and inertial
(fa ¼ �a) forces where g and a designate gravity and head linear
acceleration, respectively. Therefore, f ¼ g� a.
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In the sensory weighting model, the transfer function T̂T1
is referred to as an internal model of the sensory
dynamics, since T̂T1 is generally chosen so that T̂T1 ¼ T1.
The transfer function I� T̂T1 is referred to as an internal
model of the complementary dynamics of the sensor.
Indeed, if T̂T1 ¼ T1 is a first-order high-pass filter with a
time constant s (e.g., semicircular canals) I� T̂T1 is the
complementary low-pass filter with the same time
constant s; similarly, if T̂T1 ¼ T1 is a first-order low-pass
filter with a time constant s (e.g., part of the visual
system that measures retinal slip), I� T̂T1 is the comple-
mentary high-pass filter with the same time constant s.
Therefore, we will refer to (5) as the ‘‘frequency
completion’’ mechanism. (As discussed in Appendix B,
a low-pass filter is added to avoid algebraic feedback
loops when T̂T1 is a low-pass filter.)
To perform the frequency completion, the central

estimate x̂x1 of the physical variable x1 is fed back. This
central estimate obtained as described in (6) by ‘‘multi-
cue weighted averaging’’ of the intermediate estimates:
weighted averaging is a Bayesian maximum-likelihood
estimate with each weight being proportional to the
inverse variance of the respective intermediate estimate.
Thus, the free parameters of the model are mainly de-
termined by the assumed variances of the respective in-
termediate estimatesAx1;1 (Ax1;1 equals ~xx1 by definition) and
Ax1;2 (e.g., Ax1;2 may be obtained by processing sensory
signals from the part of the visual system that measures
retinal slip).

The sensory (~xx1) and central (x̂x1) estimates defined by
(5) and (6) have different dynamics (see Appendix B for
details). However, by use of an internal model of sensory
dynamics, the bandwidth of both estimates has been
augmented when compared to the sensory signal:

1. If the sensor is a high-pass filter (e.g., semicircular
canals), both internal estimates are primarily high-
pass-filtered versions of x1, and the corresponding
high-pass filter time constant is increased by a factor
of 1=ð1� W 1;1Þ compared to the sensor signal, leading
to a larger high-pass bandwidth.

2. If the sensor is a low-pass filter (e.g., part of the
visual system that measures retinal slip), both internal
estimates are primarily low-pass-filtered versions of
x1, and the corresponding low-pass filter time con-
stant is decreased by a factor of 1� W 1;1

� �
compared

to the sensor signal, leading to a larger low-pass
bandwidth.

If T̂T1 ¼ T1, ideally accurate sensory (~xx1) and central
(x̂x1) estimates are obtained in the absence of noise for
W 1;1 þ W 1;2 ¼ 1.

2.4 The general case

The previous elementary scheme is generalized to a set of
n physical variables xi (i ¼ 1; . . . ; n), but the estimation
process is outlined only for one physical variable xi
(Fig. 2). Using internal models of sensory dynamics, the
sensory measurement xSi of the physical variable xi is
completed to yield a sensory estimate ~xxi as outlined in
Fig. 1. Using internal models of body dynamics and
physical relationships, information with different phys-
ical meanings is transformed into a common represen-
tation (e.g., information about change of gravity is
transformed into angular velocity). Therefore, sensory
estimates ~xxi (i ¼ 1; . . . ; n) are processed to yield inter-
mediate estimates Axi;j ( j ¼ 1; . . . ;m;m � n), a process
referred to as ‘‘estimate conversion’’: there are m
intermediate estimates through multi-cue weighted
averaging (for a review see (Howard 1997)) as the
weighted sum of all intermediate estimates
Axi;j ðj ¼ 1; . . . ;m;m � nÞ of the physical variable xi:

x̂xi �
Xm
j¼1

W i;jAxi;j ð7Þ

where m is the number of intermediate estimates for a
given physical variable, and n is the number of physical
variables. The weighting parameters Wi;j are defined as
positive real scalars less than one (0 < Wi;j � 1). The
sensory (~xxi) and central (x̂xi) estimates of the physical
variables xi are combined by use of a scheme similar to
the one described in Fig. 1:

~xxi � Tixi þ I� T̂Ti

h i
x̂xi �Axi;i ð8Þ

For j ¼ i, the internal model relating the sensory
estimate ~xxi and the intermediate estimate Axi;i is the

Fig. 1. Neural computation of a central estimate. The solid lines
represent pathways that encode three-dimensional (3D) variables and
the dashed box represents the central nervous system (CNS). Let x1
designate a 3D physical variable. The dynamics of a sensor
measuring the stimulus x1 can be characterized by a transfer
function matrix T1. Using an internal model of sensory dynamics
ðT̂T1Þ in a neural feedback loop, the sensory measurement xS1 of the
3D physical variable x1 is completed to yield a sensory estimate ~xx1, a
process referred to as ‘‘frequency completion.’’ (I is the 3D identity
transfer function with Ix ¼ x.) We consider two intermediate
estimates x_1;1 and x_1;2 of the physical variable x1. We hypothesize
that the central estimate x̂x1 of the physical variable x1 is the weighted
sum of the two intermediate estimates x_1;1 and x_1;2ð0 � W1;1 < 1
and 0 � W1;2 < 1Þ, a process referred to as ‘‘weighted averaging.’’
(By definition, the intermediate estimate x_1;1 is equal to the sensory
estimate ~xx1.)

212



identity operator. Therefore, the intermediate estimate
Axi;i equals the sensory estimate ~xxi.

2.5 The sensory weighting model

Figure 3 shows a block diagram of the sensory weighting
model of visual–vestibular interactions. Switches S1 and
S2 are closed when the visual system is active, and switch
S3 is closed when smooth pursuit is active. In darkness,
all switches are open (Appendix C).
In the sensory weighting model, gravity is preferen-

tially estimated using sensory information from the tonic
otolithic afferents and the semicircular canals. Head
angular velocity x and gravity g are linked by the non-
linear differential equation (1). This differential equation
can be used to estimate gravity g by use of the head
angular velocity x:

g ¼
Z

g� xð Þdt ð9Þ

We hypothesize that the CNS contains internal models
of body dynamics and physical relationships (1–4).
Using an internal model describing how head angular
velocity x and gravity g interact as in (9), the CNS

computes the central estimates of gravity ĝg by multicue
averaging as in (7):

ĝg � Wg;1Ag1 þ Wg;2Ag2 ¼ Wg;1~ggþ Wg;2

Z
~gg� ~xxð Þdt ð10Þ

where the sensory weights (Wg;1 and Wg;2) are between
zero and one. The intermediate estimate of gravity Ag1
equals the sensory estimate4 ~gg.
Reciprocally, in the sensory weighting model the head

angular velocity can be estimated using sensory infor-
mation from the otolith organs. By applying to both
sides of (1) a cross product with an arbitrary vector u,
head angular velocity x can be expressed as a function
of gravity g:

dg=dt � u ¼ g� xð Þ � u

) x ¼ dg=dt � uþ x; uh ig½ 
g; uh i ð11Þ

Fig. 2. Schematic representation of the sensory weighting model. The
simple pattern shown in Fig. 1 is generalized to a set of n different
physical variables xi measured by n sensors (Ti). The solid lines
represent pathways that encode 3D variables and the dashed box
represents the CNS. The three layers of the model are outlined. First,
using internal models of sensory dynamics (T̂Ti), the sensory
measurement xSi of the 3D physical variable xi is completed to yield
a sensory estimate ~xxi, a process referred to as ‘‘frequency completion.’’
Second, using internal models of body dynamics and physical

relationships, the various sensory estimates ~xxi ði ¼ 1; . . . ; nÞ are
processed to yield various intermediate estimates x_i;j of the physical
variable xi (by definition, x

_

i;i � ~xxi), a process referred to as ‘‘estimate
conversion.’’ Third, these various estimates x_i;j are weighted (Wi;j) and
summed to yield the central estimate x̂xi of the physical variable xi, a
process referred to as ‘‘weighted averaging.’’ The central estimate x̂xi is
used to complete the sensory measurement xSi and to yield a sensory
estimate ~xxi of the physical variable xi. Sensory estimates ~xxi, central
estimates x̂xi and motor commands are the model outputs

4In the rest of the paper, the variables considered ðx; r; e; g; a; vÞ
are differentiated by their names, rather than by using indices i as in
Sect. 2.4. Therefore, from now on, indices are only used to differ-
entiate intermediate estimates like the indices j in Sect. 2.4. Ac-
cording to (5), we have: Ax1 ¼ ~xx;Ar1 ¼ ~rr;Ag1 ¼ ~gg;Aa1 ¼ ~aa; andAv1 ¼ ~vv.
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where ;h i is the dot product (also known as inner
product) of two vectors. This new relationship between
head angular velocity x and gravity g can be used to
estimate head angular velocity by use of otolith infor-
mation. Assuming u ¼ ~ggP (see Eq. 13 below) and
neglecting the scaling factor 1= ~gg; ~ggP

	 

for simplification

since it is equal to 1 in an upright orientation, an
intermediate estimate of head angular velocity Ax2 can be
defined:

Ax2 � dg=dt � ~ggp þ ~xx; ~ggph i~gg ð12Þ

~ggP is a second sensory estimate of gravity defined as
follows:

~ggP � c~ggþ 1� cð Þ~ggM ð13Þ

where ~ggM ¼ 0; 0;�1½  (in units of G) is the idiotropic
vector aligned with the rostrocaudal axis and c is a real
number between zero and one. Justification at this is
presented in Sect. 4.
The sensory weighting model also processes visual

information. The head angular velocity x, slow-phase
eye angular velocity in head e, and eye angular velocity
in space r are linked by the mathematical relationship
given in (2). By manipulating this relationship, another
intermediate estimate of head angular velocityAx3 can be
defined:

Ax3 ¼ ~rr � ~ee ð14Þ

Using internal models of body dynamics and physical
relationships describing how gravity g, head angular
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velocity x, eye angular velocity in head e, and eye
angular velocity in space r interact as in (11) and (14),
the CNS computes a central estimate of head angular
velocity x̂x by multicue averaging as in (7):

x̂x � Wx;1Ax1 þ Wx;2Ax2 þ Wx;3Ax3 � Wx;1 ~xx

þ Wx;2 d~gg=dt � ~ggp þ ~xx; ~ggph i~ggð Þ þ Wx;3 ~rr � ~eeð Þ ð15Þ
where the sensory weights (Wx;1, Wx;2 Wx;3) are between
zero and one. Similarly, the CNS computes a central
estimate of eye angular velocity in space r̂r:

r̂r � Wr;1Ar1 þ Wr;2Ar2 þ Wr;3Ar3 � Wr;1~rr þ Wr;2 ~xx þ ~eeð Þ
þ Wr;3 d~gg=dt � ~ggp þ ~xx; ~ggph i~ggð Þ þ ~ee½  ð16Þ

where the sensory weights (Wr;1, Wr;2 Wr;3) are between
zero and one.
Finally, using internal models of body dynamics and

physical relationships describing how head angular ve-
locity x, linear acceleration a, and linear velocity v in-
teract as in (3), the CNS computes central estimates of
both linear acceleration âa and linear velocity v̂v:

âa � Wa;1Aa1 þ Wa;2Aa2 ¼ Wa;1~aaþ Wa;2 d~vv=dt þ ~xx � ~vvð Þ ð17Þ

v̂v � Wv;1Av1 þ Wv;2Av2 ¼ Wv;1~vvþ Wv;2

Z �
~aa� ~xx � ~vvð Þdt

ð18Þ

where the sensory weights (Wa;1, Wa;2, Wv;1 and Wa;2) are
between zero and one, and

R �
dt designates a leaky

integration with a time constant sa ¼ 0:13 s. The time
constant sa has been chosen to fit reported human
translational VOR responses (Busettini et al. 1994).

2.6 The gravito-inertial force resolution

Neither tonic nor phasic otolithic afferents distinguish
gravity from linear acceleration (Anderson et al. 1978;
Fernandez and Goldberg 1976a; Loe et al. 1973) since

tonic and phasic afferents discharge similarly to changes
in gravito-inertial force due to either tilt or translation.
However, in our model the tonic (‘‘regular’’) afferent
signals contribute preferentially to the estimate of
gravity, and the phasic (‘‘irregular’’) afferent signals
contribute preferentially to the estimate of linear
acceleration, as previously suggested (Droulez and
Darlot 1989; Mayne 1974; Young and Meiry 1968).
To compute the sensory estimates of gravity ~gg and

linear acceleration ~aa, the ‘‘frequency completion mech-
anism’’ in (8) has to be modified slightly. Indeed, to
estimate gravity (g ¼ f þ a), the CNS needs to add the
low-frequency content of an estimate of linear acceler-
ation to the tonic otolithic afferent signal. Similarly, to
estimate linear acceleration (a ¼ g� f ), the CNS needs
to subtract the phasic otolithic afferent signal from the
high-frequency content of an estimate of gravity.
Therefore, to compute the sensory estimate of gravity

~gg, we hypothesize that the CNS adds to the tonic oto-
lithic afferent signal the sensory estimate of linear ac-
celeration ~aa filtered by an internal model of the tonic
otolithic afferents T̂Tton ¼ Tton:

~gg ¼ Ttonf þ T̂Tton~aaþ I� T̂Tton
� �

ĝg ð19Þ

Similarly, to compute the sensory estimate of linear
acceleration ~aa, we hypothesize that the CNS subtracts
the phasic otolithic afferent signal from the central
estimate of gravity ĝg filtered by an internal model of the
phasic otolithic afferents T̂Tpha ¼ Tpha:

~aa ¼ Ha �Tphaf þ T̂Tphaĝgþ I� T̂Tpha
� �

âa
� 

ð20Þ

Since phasic units have a DC component (Appendix A),
an additional filter Ha is added to the computing of the
sensory estimate of linear acceleration ~aa to prevent any
persistent non-zero estimates of linear acceleration (~aa
and âa) in the absence of movements. The diagonal
elements of the transfer function Ha are first-order high-
pass filters with a time constant si ¼ 200 s. (The value of
this time constant has little influence on simulated data

Fig. 3. Block diagram model of compensatory reflexive eye move-
ments during movements of the head and visual surround. To define
visual surround motion, we consider the 3D angular velocity (rv) and
translational velocity (vv) of the visual surround in space. To define
head motion and orientation, we consider in a head-fixed frame of
reference the 3D head angular velocity x, eye angular velocity in space
r, eye angular velocity in head e, gravity g, head linear acceleration a,
and head linear velocity in space v. (We also define the gravito-inertial
force f ¼ g� a.) These physical variables are measured by various
sensors, the dynamics of which are mathematically implemented by
Laplace transfer functions (Tscc;Tton;Tpha;Tid;Trs). The outputs of
the model are the sensory estimates (~xx; ~rr; ~ee; ~gg; ~aa; ~vv) and central
estimates (x̂x; r̂r; êeM ; ĝg; âa; v̂v) of physical variables. Intermediate esti-
mates x

_

2, x
_

3, r
_

2, r
_

3, g
_

2, v
_

2, a
_

2) are also computed. An additional
sensory estimate ~ggP is computed using the sensory estimate of gravity
~gg and the idiotropic vector ~ggM ¼ ½0; 0;�1 in G units. To easily track
afferent information, we represent the semicircular canal sensory
signal and associated sensory estimate of head angular velocity in
space ~xx in magenta, the tonic otolith afferent signal and associated
sensory estimate of gravity ~gg in red, the phasic otolith afferent signal
and associated sensory estimate of linear acceleration ~aa in orange, the
visual image deformation signal and associated sensory estimate of

linear velocity ~vv in green, and the visual retinal slip signal and
associated sensory estimate of eye angular velocity in space ~rr in blue.
In addition, we represent the efferent copy of the eye motor order êeM
and associated sensory estimate of eye angular velocity in head ~ee in
brown. Finally, when sensory estimates are combined to elicit
intermediary sensory estimates and central estimates, we use the
neutral color black, as for the rest of the figure. Sensory estimates are
calculated using internal models of sensory dynamics
(T̂Tscc; T̂Tton; T̂Tpha; T̂Tid; T̂Trs) and body dynamics (T̂Teye). Internal models
of physical relationships process the sensory estimates to elicit the
central estimates. (Two additional operators were defined: a first-order
high-pass filter Ha with a time constant si ¼ 200 s and a first-order
leaky-integrator

R �
dt with a time constant sa ¼ 0:13 s.) The model

also computes the eye angular velocity in head e, which is the eye
response to the various eye command components: the angular (eA),
translational (eT) and total (eR) reflexive eye commands, the pursuit
eye command eP and the total eye command eM. An efference copy of
the total command êeM and a sensory estimate of the eye angular
velocity in head ~ee are also computed. In darkness, the external visual
feedback loop is open (switches S1 and S2 open), and the smooth
pursuit system is deactivated (switch S3 open). In lighted conditions,
switches S1, S2 and S3 are closed

b
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and has been arbitrarily chosen so that any estimates of
linear acceleration are negligible after about 600 seconds
with no head movement.)

2.7 Eye commands and the eye plant

One output of the sensory weighting model of visual–
vestibular interactions is the slow-phase eye angular
velocity in head e. To move the eye plant (Appendix A),
a motor command eM is computed by the CNS and sent
to the motoneurons innervating the six extraocular
muscles. The total eye command eM is the sum of the
compensatory reflexive eye command eR and smooth
pursuit command eP. The total reflexive eye command
eR is the sum of the angular (eA) and translational (eT)
reflexive commands. To simulate the fast-rise compo-
nent of the optokinetic nystagmus (OKN), a 2D version
of an existing smooth-pursuit model (Robinson et al.
1986) is implemented. (The mathematical descriptions of
the motor commands and pursuit system are detailed in
Appendix C.)

2.8 Simulation

The sensory weighting model is implemented with
the Matlab-Simulink software package (MathWorks
Natick, Mass.) and a fourth-order variable-step
Dormand–Prince algorithm is used for the simulations
(the ode45 function in Simulink). The model is defined
by nine free parameters (seven sensory weights and two
time constants) determined through a process of trial
and error (Table 1); this single set of parameters is used
for all simulations. To reduce from thirteen to seven the
number of free parameters defining the various sensory
weights, we assumed that the sum of weights equaled
one (

Pm
j¼1 Wi;j ¼ 1) and used the following relationships

(the values for Wx;3, Wr;2 and Wr;3 are discussed in
Appendix C):

Wg;2 ¼ 1� Wg;1;Wa;2 ¼ 1� Wa;1;Wv;2 ¼ 1� Wv;1;

Wx;3 ¼ 1� Wr;1 ð21Þ
Wr;2 ¼ Wx;1 1� Wr;1

� �
= Wx;1 þ Wx;2

� �
;

Wr;3 ¼ Wx;2 1� Wr;1
� �

= Wx;1 þ Wx;2

� �

3 Results

3.1 Vision-canal interaction: Yaw rotation
about an earth-vertical in darkness or in light

Results (Fig. 4) show that the model successfully
simulates data from experiments investigating the angu-
lar VOR, OKN and optokinetic afternystagmus
(OKAN), visual VOR (VVOR), and visual suppression.
Switches S1, S2, and S3 are closed in the light (Fig. 3)

Table 1. Free parameters of the sensory weighting model

Parameter Value

Wx;1 0.5
Wx;2 0.1
Wr;1 0.85
Wg;1 0.4
Wa;1 0.4
Wv;1 0.6
c 0.7
sa 0.13 s
si 200 s

Fig. 4. Simulations of visual–vestibular interaction during yaw
rotation about an earth-vertical axis. The subject is either immobile
(B), or (A, C, D) rotates on-center about an earth-vertical axis in yaw
at 60�/s to the subject’s left (trapezoidal profile with an acceleration
and a deceleration in 1 s and a constant velocity for 80 s). The subject
is either in the dark (A), or the light is turned on at the beginning of
the rotation and turned off after 80 s (B, C, D). (If there is a rotation

movement, the rotation is stopped when the lights are turned off.) The
different plots show the horizontal, slow-phase velocity (SPV) of the
vestibulo-ocular reflex (VOR) (A), optokinetic nystagmus (OKN) and
optokinetic afternystagmus (OKAN) with pursuit (solid lines) and
without pursuit (dashed lines) (B), visual vestibulo-ocular reflex
(VVOR) (C), and nystagmus during visual suppression (VS) (D)
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and opened in darkness. In all protocols, the subject sits
upright. Either the subject or an optokinetic drum, or
both, are rotated in yaw about an earth-vertical axis.
In the first simulation (Fig. 4A), the subject is rotated

in yaw to the right in the dark. Pre-rotatory VOR slow-
phase eye velocity shows an exponential decay with a
46�/s peak, a dominant time constant of 20.8 s (see
Appendix C) and a secondary time constant of 100 s.
(The time constant values were determined by a least-
square error fit to the sum of two exponential decays.)
The dominant VOR time constant is greater that the
canal afferent dominant time constant (6 s) and within
the normal human VOR range (Barnes 1993). The post-
rotatory nystagmus is a reversed version of the per-
rotatory nystagmus.
In the second simulation (Fig. 4B), an optokinetic

drum is rotated in yaw to the subject’s left. During an-
gular optokinetic stimulation with no movement of the
head, the slow-phase eye velocity of the OKN has two
distinct components: a fast-rise component driven by the
pursuit system (80% of the OKN) and a slow-rise com-
ponent (20% of the OKN) processed via interactions
with the vestibular system (Cohen et al. 1981; Jell et al.
1984; Lafortune et al. 1986). After the lights are off, the
early drop of post-rotatory slow-phase eye velocity from
56�/s to 18�/s (t ¼ 81 s) is due to the inactivation of the

pursuit system, but a small OKAN decay with a time
constant of 20.8 s is still present as reported in humans
(Cohen et al. 1981; Jell et al. 1984; Lafortune et al. 1986).
(The time constant was determined by a least-square
error fit to a single decaying exponential function).
In the third simulation (Fig. 4C), the subject is ro-

tated in yaw to the right, while the optokinetic drum
stays immobile in space. The resulting eye movements
are referred to as the VVOR (Black et al. 1996). The
steady-state VVOR pre-rotatory response has a com-
pensatory gain of 0.93, which is consistent with experi-
mental data. The initial peak results from the
superimposition of vestibular and optokinetic responses.
The post-rotatory response shows a reversal with a peak
at �32�/s (t ¼ 81 s), less than the peak of the post-ro-
tatory VOR response in the dark (�50�/s in Fig. 4A).
This reduced response is consistent with a superposition
of the post-rotatory VOR response on the OKAN re-
sponse, as shown experimentally (Cohen et al. 1981;
Koenig et al. 1978).
In the fourth simulation (Fig. 4D), the subject and

the optokinetic drum are rotated in yaw to the subject’s
left. Simulations show near total cancellation of the re-
sponse (response smaller than 4�/s) after 3 s, in agree-
ment with experimental results (Cohen et al. 1981;
Koenig et al. 1978).

Fig. 5. Predicted responses induced by a 60�/s yaw rotation to the
subject’s right about an earth-horizontal axis (‘‘barbecue-spit’’
rotation) in darkness and in lighted conditions (trapezoidal profile
with acceleration and deceleration in 2 s). For a barbecue-spit
rotation in darkness, modeling predictions of the per- and post-
rotatory central estimate of head angular velocity x̂x (A), sensory
estimate of gravity ~gg (B), sensory estimate of linear acceleration ~aa (C),

and total VOR (D). (After rotation, the subject is stopped in a nose-up
orientation.) Also shown, modeling predictions of the per-rotatory
reflexive horizontal slow-phase velocity SPV during a barbecue
rotation in darkness (VOR), and in light with a space-fixed (VVOR)
or head-fixed (FIX) visual surround (E). (For all plots, red, blue, and
black lines represent the x-, y- and z-components, respectively.
Direction conventions are indicated in parentheses.)
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3.2 Canal-otolith-vision interaction: yaw rotation
about an earth-horizontal axis (‘‘barbecue protocol’’)

In this simulation (Fig. 5), the subject is rotated in yaw
for 60 s at 60�/s about an earth-horizontal axis, a so-
called 90� off-vertical axis rotation or ‘‘barbecue-spit’’
rotation. Barbecue-spit rotations have been performed
in humans (Benson and Bodin 1966b; Haslwanter et al.
2000; Wall and Furman 1990); while motion profiles
were not identical, similar VOR characteristics were
observed. In darkness, the horizontal VOR decays to a
small non-zero compensatory bias, and a modulation
is superimposed on the decaying horizontal VOR.
Furthermore, non-compensatory sinusoidal vertical
and torsional VOR components are present. In lighted
conditions with a space-fixed visual surround the bias is
larger than in darkness, and about equal to the stimulus
angular velocity. With a head-fixed visual surround,
there is no bias.
These experimental observations are accurately sim-

ulated by the sensory weighting model (d ¼ 0:9 m in
light and d ¼ 1:8 m in darkness). The central estimate of
horizontal head angular velocity decays to a non-zero
compensatory bias (7�/s), and non-zero sinusoidal cen-
tral estimates of vertical (x̂xy , 4

�/s peak-to-peak) and
torsional (x̂xx, 4

�/s peak-to-peak) head angular velocity
are elicited (Fig. 5A). As the horizontal semicircular
canal cues decay, the sensory estimate of gravity ~gg keeps
rotating at the same rate as the physical rotation but its
magnitude decreases slightly (Fig. 5B). Since the sensory
estimate of gravity ~gg lags behind the otolith measure-
ment of gravity and its amplitude decays with time, a
non-zero sensory estimate of linear acceleration ~aa is
elicited (Fig. 5C). Therefore, a horizontal translational
VOR component (15�/s peak-to-peak) superimposes on
the total VOR (Fig. 5D, E).
During and after deceleration, the response is

predominantly a horizontal VOR that decays and then
reverses (Fig. 5D). Because of the ongoing canal rota-
tion cue in the direction opposite the preceding motion
(Fig. 5A), the sensory estimate of gravity ~gg is tilted away
from the otolithic measurement of gravity (Fig. 5B).
Because of this discrepancy between measured and es-
timated gravity, a non-zero interaural sensory estimate
of linear acceleration (~aay) is elicited (Fig. 5C), leading to
a horizontal translational VOR component that adds to
the angular VOR component, as measured experimen-
tally (Merfeld et al. 1999; Zupan et al. 2000). A small
vertical eye movement (peak of �2�/s) is also elicited
(Fig. 5D), which slightly shifts the axis of eye rotation
toward alignment with the sensory estimate of gravity ~gg
rather than gravity. It takes about 40 s after stopping for
the sensory estimate of gravity ~gg to realign with true
gravity.
During a barbecue-spit rotation in light with a space-

fixed visual surround, the sensory weighting model ac-
curately simulates that the bias is large and nearly equal
to the stimulus angular velocity (Fig. 5E). When the
barbecue-spit rotation is simulated with a head-fixed
visual surround, the sensory weighting model accurately
simulates the absence of a bias (Fig. 5E).

3.3 Canal–otolith interaction: eccentric yaw
rotation about an earth-vertical axis

During this simulation, the subject is rotated to the
subject’s right off-center in darkness. The subject sits
upright at a radius of 0.514 m from the rotation axis and
either faces the direction of motion (‘‘facing motion’’) or
has his back toward the direction of motion (‘‘back to
motion’’). This eccentric rotation results in a centrifugal
force of 1 g that tilts the gravito-inertial force from 0� to
45� in roll as the angular velocity increases. The chair is
then brought to a stop and the subject stays immobile
for 60 s in darkness. Experimental data have shown
differences in the eye movements between these two
orientations in humans (Lansberg et al. 1965; Merfeld
et al. 1992, 2001).
The model is able to reproduce the experimental

differences observed in VOR eye movements between
facing-motion and back-to-motion situations during the
acceleration and steady-state phases (Merfeld et al.
2001). During the acceleration phase, the magnitude of
the horizontal, slow-phase eye velocity is greater for the
facing-motion orientation (161�/s, Fig. 6D) than for
the back-to-motion orientation (119�/s, Fig. 6H). The
vertical (15�/s peak) and torsional (15�/s peak) compo-
nents reverse with the subject orientations (Fig. 6D).
The central estimate of yaw angular velocity (x̂xz) builds
up in response to signals from the horizontal semicir-
cular canals (Fig. 6A, E). As the gravito-inertial force
builds up simultaneously, the central estimate of pitch
angular velocity also builds up (x̂xy), shifting the axis of
the central estimate of angular velocity (x̂x) toward
alignment with the gravito-inertial force. The direction
of both central estimates of pitch (x̂xy) and roll (x̂xx)
angular velocity reverse with the subject’s orientation
(Fig. 6A, E).
During acceleration, due to the horizontal canal cues

the naso-occipital (~ggx), interaural (~ggy) and rostrocaudal
(~ggz) sensory estimates of gravity lag behind the gravito-
inertial force (Fig. 6B, F). Consequently, a non-zero
sensory estimate of linear acceleration ~aa is elicited, and
non-zero central estimates of naso-occipital (v̂vx), inter-
aural (v̂vy), and rostrocaudal (v̂vz) linear velocity are thus
calculated (Fig. 6C, G). The interaural central estimate
of linear velocity (v̂vy) peaks as the steady-state maximum
centripetal acceleration is reached and decays thereafter
to a plateau. The direction of the interaural central es-
timate of linear velocity (v̂vy) reverses with the subject’s
orientation: rightward for ‘‘facing-motion’’ (Fig. 6C)
and leftward for ‘‘back to motion’’ (Fig. 6G).
By definition, the angular VOR component compen-

sates for the central estimate of angular velocity (x̂x). Due
to the presence of a non-zero interaural central estimate
of linear velocity (v̂vy) that reverses with the subject’s
orientation, a horizontal translational VOR component
(21�/s peak) is computed which adds to the horizontal
angular VOR for ‘‘facing-motion’’ and subtracts for
‘‘back to motion’’ (d ¼ 1 m is chosen for these simula-
tions). This superimposition of the angular and linear
components explains the difference in the peak and
steady-state values of the horizontal VOR (Fig. 6D, H).
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Responses following deceleration are smaller–the
primary response compensating for the post-rotatory
central estimate of yaw angular velocity (x̂xz) – since the
translational VOR component is small and transient
(peak 5�/s). In addition, the return of the interaural es-
timate for gravity (~ggy) towards upright slightly leads the
return of the gravito-inertial force as it has been
reported (Merfeld et al. 2001).

4 Discussion

The model presented here allows accurate simulation of
both eye movements and perceptions in response to a
large variety of stimuli. The hypothesis that the CNS
implements internal models of sensory dynamics, body
dynamics, and physical relationships is the key to these
successful simulations. As mentioned above an internal

model is the neural implementation of physical principles
that we describe with mathematical equations. The two
principal questions in evaluating the sensory weighting
approach are: (1) what are the physiological bases for
the sensory weighting model? and (2) what is the
originality of the sensory weighting model over previous
approaches. These questions are addressed below.

4.1 Physiological bases of the sensory weighting model

4.1.1 Influence of rotational cues on the perception of self-
orientation. The influence of rotational cues on human
orientation is supported by various experimental obser-
vations. First, after a 90� post-rotatory tilt following a
yaw rotation about an earth-vertical axis (‘‘dumping’’),
subjects reported illusory tilt in a direction consistent

Fig. 6. Simulations of eccentric 250�/s yaw rotations to the subject’s
right (trapezoidal profile with acceleration and deceleration in 10 s
and a constant velocity during 120 s). The left column shows the
simulations with the subject facing the motion. The right column
shows the simulations for a with the subject’s back to the motion.
Modeling predictions of the central estimate of head angular velocity

x̂x (A, E), sensory estimate of gravity ~gg (B, F) (the dashed line
represents the physical interaural gravito-inertial force), central
estimate of linear velocity v̂v (C, G), and VOR responses (D, H)
(For all plots, red, blue and black lines represent the x-, y- and z-
components, respectively. Direction conventions are indicated in
parentheses.)
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with the post-rotatory canal cue (Benson and Bodin
1966a; Merfeld et al. 1999; Von Holst and Grisebach
1951). During this paradigm, the duration of the post-
rotatory sensation (Benson and Bodin 1966a) was not
significantly influenced by head orientation, strengthen-
ing the hypothesis that the illusory tilt is canal driven.
Similarly, others (Stockwell and Guedry 1970) have
shown the influence of roll rotation cues from the
semicircular canals on perceived roll tilt using actual
dynamic roll tilts. In addition, during dumping protocols,
VOR dynamics varied with head orientation (Benson and
Bodin 1966a; Zupan et al. 2000). These variations were
consistent with the hypothesis that canal cues were tilting
the estimate of gravity away from measured gravity,
eliciting a non-zero translational VOR in the absence of
actual linear acceleration (Merfeld et al. 1999; Zupan
et al. 2000). Using visual cues, Dichgans et al. (1972) also
induced illusory tilts using roll vection. The direction of
tilt reported was opposite to the direction of the
optokinetic stimulus, consistent with the sensory
weighting model simulated responses (data not shown).
In the sensory weighting model, we hypothesized that

rotational cues influence the sensory estimate of gravity
~gg via the

R
~gg� ~xx dt component of the central estimate of

gravity5 ĝg as shown in (10). This interaction between
rotational and orientation cues leads to illusory tilt when
either the head or the visual surround rotation axis is not
collinear with gravity (Fig. 5A, B). During eccentric
rotation, the presence of horizontal canal cues also in-
fluences the lag of the illusory roll tilt behind the tilt of
the gravito-inertial force (Fig. 6B, F).

4.1.2 Influence of static otolithic cues on eye movements.
Head orientation influences reflexive eye movements. In
humans, after a post-rotatory tilt following a rotation
about an earth-vertical axis (‘‘dumping’’), VOR respons-
es have shorter time constants (Benson and Bodin
1966a; Fetter et al. 1992; Zupan et al. 2000) and the
VOR rotation axis slightly shifts toward alignment with
gravity (Fetter et al. 1996; Harris and Barnes 1987;
Zupan et al. 2000). Similarly, eye movements in re-
sponse to optokinetic stimuli about an axis not aligned
with gravity also present an axis shift (Gizzi et al. 1994).
The sensory weighting model accurately simulates a

shorter time constant of the angular VOR and a ten-
dency of the VOR rotation axis to shift toward alignment
with gravity after a post-rotatory tilt (data not shown,
but similar to the post-rotatory responses following yaw
rotation about an earth-horizontal axis in Fig. 5D).
These simulated responses arise from interactions be-
tween rotational and orientation cues. More specifically,
the second component ~xx; ~ggP

	 

~gg of the intermediate

estimate of head angular velocity Ax2 accounts for both
the shortening of the eye movement time constant and
the axis shift towards alignment with the sensory

estimate of gravity. This component also accounts for an
axis shift during optokinetic stimulation about an axis
not aligned with gravity (data not shown), since vestib-
ular and visual information share common pathways.
We can postulate that the processing of the interme-

diate estimate of head angular velocity Ax2 includes the
uvulo-nodular cerebellar region, since a lesion of this
region in rhesus and cynomolgus monkeys (Angelaki
and Hess 1995; Wearne et al. 1996, 1998) suppresses the
eye-movement characteristics (axis shift and time
constant reduction) simulated by this component.

4.1.3 Influence of dynamic otolithic cues on eye move-
ments. During yaw rotation about an off-vertical axis in
darkness (e.g., about an earth-horizontal axis as in
Fig. 5), the horizontal VOR exhibits a sinusoidal
modulation with the same rate as the rotation, as well
as a small usually compensatory bias in humans (Benson
and Bodin 1966b; Darlot et al. 1988; Wall and Furman
1990). The compensatory bias arises from the utilization
of otolith cues by the CNS, since a bias is still present
after canal plugging (Cohen et al. 1983; Correia and
Money 1970). In addition, vertical and torsional com-
ponents are observed (Darlot et al. 1988; Harris and
Barnes 1987; Haslwanter et al. 2000).
In the sensory weighting model, the horizontal sinu-

soidal modulation is primarily a translational VOR
component compensatory for the estimated interaural
linear acceleration. The compensatory bias arises from
the utilization of the rotating otolith cues to calculate the
intermediate estimate of head angular velocity Ax2. The
first component d~gg=dt � ~ggP of the intermediate estimate
of head angular velocity Ax2 accounts for the simulation
of this compensatory bias. On the other hand, the sec-
ond component ~xx; ~ggP

	 

~gg of the intermediate estimate of

head angular velocity Ax2 accounts for both vertical and
torsional components that can be interpreted as the eye
rotation axis shifting toward alignment with the sensory
estimate of gravity ~gg.

4.1.4 The gravito-inertial force resolution. Because of the
mechanism used to separate the otolithic measurement
of gravito-inertial force (f ) into estimates of gravity (ĝg
and ~gg) and linear acceleration (âa and ~aa), any discrepancy
between the gravito-inertial force f and the central
estimate of gravity ĝg leads to a non-zero sensory
estimate of linear acceleration ~aa according to (20), and
therefore non-zero central estimates of linear accelera-
tion âa and velocity v̂v according to (17) and (18).
Therefore, when rotational cues induce an illusory tilt
so that the central estimate of gravity ĝg differs from
measured gravity g, the sensory weighting model
simulates non-zero sensory (~aa) and central (âa) estimates
of linear acceleration, even in the absence of physical
linear acceleration. This phenomenon is illustrated in
Fig. 5B, and 5C during the post-rotatory period follow-
ing a yaw rotation about an earth-horizontal axis.
Various experimental data in humans support these
simulated results. Indeed, these induced VOR responses
have been observed in humans after a 90� post-rotatory
tilt following a yaw rotation about an earth-vertical axis

5 While the central estimate of gravity ĝg is not accurate because of
the integration inAg2 ¼

R
~gg� ~xx dt, it is important to notice that only

its derivative or its high-pass filtered version through Ha:Tpha
(which are both accurate) are used to calculate the sensory esti-
mates of gravity ~gg and linear acceleration ~aa, respectively.
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(Merfeld et al. 1999; Zupan et al. 2000), after a yaw
rotation about an earth-horizontal axis (Zupan et al.
2000), after optokinetic yaw angular stimulation about
an earth-horizontal axis (Wall et al. 1999), and after
optokinetic roll angular stimulation about an earth-
horizontal axis (Zupan et al. 2001).

4.1.5 The idiotropic vector. As suggested by Mittelstaedt
(1983, 1986), the sensory weighting model implements
an idiotropic vector ~ggM in (13). The use of this idiotropic
vector is indispensable to accurately simulate the
sinusoidal variations of both vertical and torsional
VOR during a yaw rotation about an earth-horizontal
axis or ‘‘barbecue-spit’’ rotation (Fig. 5D), as shown by
Haslwanter et al. (2000) with an alternative but similar
approach. Because the idiotropic vector ~ggM is used to

calculate the second estimate of gravity ~ggP, the compo-
nent ~xx; ~ggP

	 

~gg of the intermediate estimate of head

angular velocity Ax2 accounts for both vertical and
torsional VOR during a barbecue-spit rotation.
Similarly, because the idiotropic vector ~ggM is used to

calculate the second estimate of gravity ~ggPin the com-
ponent ~xx; ~ggP

	 

~gg of the intermediate estimate of head

angular velocity Ax2, the sensory weighting model can
simulate a slight shift of the VOR rotation axis toward
alignment with gravity after a 90� tilt following a yaw
rotation about an earth-vertical axis (‘‘dumping’’), or
after a yaw rotation about an earth-horizontal axis
(‘‘barbecue-spit’’ rotation) as observed in humans (Fer-
man et al. 1987; Fetter et al. 1996).
In addition, because the idiotropic vector ~ggM is used

to calculate the second estimate of gravity ~ggP, the ori-
entation of ~ggP accurately matches subjective orientation
after roll tilt (Udo de Haes 1970). To make these sim-
ulations (data not shown), we weighted the otolith input
with a gain of 1 for the x and y directions, and 0.8 for the
z direction as suggested by Mittelstaedt (1983). (This
change does not qualitatively affect any of the presented
simulated responses.)
Since the orientation of ~ggP matches so well the sub-

jective orientation during eccentric rotation and after
roll tilt, why not replace the sensory estimate of gravity ~gg
by the second sensory estimate of gravity ~ggP in (10) and
(12)? Unfortunately, when we replaced the sensory es-
timate of gravity ~gg by ~ggP in (10) and (12), we were not
able to accurately simulate (data not shown) the influ-
ence of orientation on the optokinetic nystagmus (Gizzi
et al. 1994). Indeed, when using ~gg in (10) and (12), we
correctly simulate that the axis shift of the optokinetic
nystagmus toward alignment with gravity is smaller for
an earth-diagonal optokinetic stimulation with head
upright than for a yaw optokinetic stimulation with
head rolled 45�, as experimentally observed (Gizzi et al.
1994). When we replace the sensory estimate of gravity ~gg
by ~ggP in (10) and (12), we predicted the exact opposite
result. One plausible explanation is that the CNS ac-
cesses ~ggP at a perceptual level, while it accesses ~gg for
reflexive oculomotor responses.

4.1.6 Significance of the sensory and central estimates. As
seen in Sect. 3 as well as in the discussion above, it seems

that the CNS may principally use central estimates x̂xi to
elicit motor responses such as reflexive eye movements,
and sensory estimates ~xxi for perceptual responses.
Indeed, the sensory weighting model accurately simu-
lates VOR responses for a large variety of complex
stimuli, and these VOR responses are compensatory to
the central estimates of head angular velocity x̂x, eye
angular velocity in space r̂r, and head linear velocity v̂v, as
described in (C4) and (C11). Similarly, the second
sensory estimate of gravity ~ggP and the sensory estimate
of linear acceleration ~aa accurately predict orientation
and motion perception for a large variety of complex
stimuli (see Sects. 3 and 4.1.5).
However, the difference between motor and percep-

tual responses cannot be sharply divided as resulting
from differences between central and sensory estimates,
respectively. Additional processing is essential, espe-
cially at the perceptual level. For example, perceptual
responses during yaw rotation about a tilted axis (Darlot
et al. 1987; Denise et al. 1988) or earth-horizontal axis
(Guedry 1965) may result from additional low-pass and
high-pass filtering of the sensory estimates of gravity and
linear acceleration, respectively, as suggested by
Mittelstaedt et al. (1989).

4.1.7 Parameter variations between species.While having
similar horizontal dominant VOR time constants
(�20 s), human and monkey VOR responses differ in
many ways:

1. Larger bias in squirrel (Goldberg and Fernandez
1982) and cynomolgus monkeys (Cohen et al. 1983)
during off-vertical axis rotation.

2. Larger shift of theVOR rotation axis toward alignment
with gravity after a post-rotatory tilt in squirrel (Mer-
feld et al. 1993b) and rhesus or cynomolgus monkeys
(Angelaki and Hess 1994; Wearne et al. 1998).

3. Larger shift of the VOR rotation axis toward align-
ment with gravity during eccentric rotation in squirrel
(Merfeld and Young 1995) and rhesus or cynomolgus
monkeys (Wearne et al. 1999).

To account for these differences between humans and
monkeys, we adjusted two parameters:

1. The otolith contribution Ax2 to the central estimate of
head angular velocity x̂x is increased by increasing
Wx;2 from 0.1 (human) to 0.53 (monkey).

2. To maintain the same horizontal dominant VOR time
constant, the canal contribution ~xx to the central es-
timate of head angular velocity x̂x is decreased by
decreasing Wx;1 from 0.5 (human) to 0.07 (monkey),
so that se;2 ¼ 20:8 s as described by (C6).

With these monkey parameters, the sensory weighting
model simulates that the shift of the VOR rotation axis
toward alignment with gravity is larger in monkeys than
in humans following a yaw rotation about an off-vertical
axis, as observed experimentally (Jaggi-Schwarz et al.
2000). Using the elements of the third column of A ~gg; ~ggP

� �
matrix described in (33) below, we predict a h ¼ 22� axis
shift following a yaw rotation about an axis tilted 24�
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with respect with earth-vertical, and a h ¼ 66� axis shift
following a yaw rotation about an earth-horizontal
axis6. These results match previous experimental obser-
vations in rhesus monkeys that demonstrate a 16:7� and
68:6� average axis shift respectively (Figs. 6 and 7 in
Jaggi-Schwarz et al. 2000). The same simulated respons-
es hold after a 90� post-rotatory tilt following an
earth-vertical axis yaw rotation, as observed experimen-
tally in rhesus monkeys (Angelaki and Hess 1994).
Squirrel monkeys demonstrate a translational VOR

during eccentric rotation (Merfeld and Young 1995)
while cynomolgus monkeys do not (Wearne et al. 1999).
This effect can be accounted for by keeping the canal
contribution Ag2 to the central estimate of gravity ĝg for
squirrel monkeys the same as in humans (Wg;2 ¼ 0:6),
while decreasing it in cynomolgus monkeys (Wg;2 ¼ 0:2).

4.1.8 Otolith afferent frequency segregation. In the
sensory weighting model, the separation of gravito-
inertial force into estimates of gravity and linear
acceleration remains principally based on central inter-
actions of otolith information with canal and visual
information. The influence of canal information on tilt–
translation segregation has been confirmed experimen-
tally in rhesus monkeys, since the ability to distinguish
tilt from translation was impaired by canal plugging
(Angelaki et al. 1999). The implementations of tonic and
phasic otolithic afferents in the sensory weighting model
leads to better quantitative simulated responses than the
observer model (Merfeld 1995a) which did not imple-
ment afferent segregation.

4.2 Originality of the Sensory Weighting model

4.2.1 Related modeling work. Early models of reflexive
eye movements (Borah et al. 1988; Ormsby and Young
1977; Raphan et al. 1977; Robinson 1977; Schmid et al.
1979, 1980) were primarily aimed at describing the
prolongation of both the vestibular nystagmus (com-
pared to the activity of canal afferent) and the optoki-
netic nystagmus in darkness, referred to as OKAN.
These models implemented sensory interactions between
information coming from the semicircular canals and the
visual system, and differed in their implementation of
central pathways and non-linearity. None of these early
models explicitly included internal models of sensory
dynamics, body dynamics, or physical relationships.
Another early model of canal–otolith interactions

focused on perceptual responses (Mayne 1974). Mayne’s
model implemented a peripheral frequency segregation
between otolith afferents to separate tilt from translation
as previously suggested by Young and Meiry (1968). The
perception of vertical was also influenced by rotational
cues in Mayne’s model, and this implementation mim-
icking a physical relationship can be considered to be
one of the earliest (though non-explicit) internal models
used in a model of visual–vestibular interactions.

To account for the influence of otolithic information
on visual–vestibular interactions, Robinson’s (1977)
original model, which also implemented a frequency
completion mechanism, has been modified (Hain 1986).
Hain’s model implements one aspect of the influence of
otolith information on rotational cues; i.e., the use of a
rotating gravity vector measured by the otolith organs
during off-vertical axis rotation to elicit a compensatory
bias in the eye-movement response. But this model does
not appear to predict later findings that the VOR rota-
tion axis tends to shift toward alignment with gravity, or
that canal cues influences the estimation of gravity. Fi-
nally, while sensory inputs are 3D, Hain’s model focused
primarily on horizontal eye movements.
Similarly, the velocity storage integrator model

(Raphan and Sturm 1991; Raphan et al. 1977) has been
modified to account for otolith influences on reflexive
eye movements (Wearne et al. 1998, 1999). These recent
models by Wearne et al. do not implement either the use
of dynamic otolith information to estimate head rota-
tion (e.g., it does not predict a compensatory bias in eye
movements during off-vertical axis rotation) or the in-
fluence of semicircular canal cues on the estimation of
gravity. These models do implement the tendency of the
eye movement rotation axis to shift toward alignment
with gravity.
Another model (Angelaki and Hess 1995) has math-

ematically described the influence of otolith inputs on
monkeys reflexive eye movements. First, Angelaki and
Hess hypothesize that vertical canal activity is projected
onto the direction of gravity to account for the tendency
of the eye pitch and roll rotation axis to align with
gravity. Their transformation matrix is very similar to
the one implemented in the sensory weighting model
(33), but their model does not include either the influ-
ence of semicircular canal cues on the estimation of
gravity or an idiotropic vector. In fact, their model as-
sumed that a perfect neural representation of gravity
existed since physical and neural representations were
not distinguished. Second, to predict an axis shift from
horizontal to either vertical or torsional components, the
horizontal canal activity is rotated instead of projected
onto the direction of gravity, as also described by Jaggi-
Schwarz et al. (2000). These differences from the sensory
weighting model may reflect differences in canal–otolith
interactions between monkeys and humans.
More recently, canal–vision (Mergner et al. 1997) and

canal–otolith (Mergner and Glasauer 1999) interactions
have been modeled using an approach similar to the
frequency completion mechanism described in (8) in the
sensory weighting model, but without multicue averag-
ing (7). In their model, the authors do not include an
idiotropic vector and consider internal models of phys-
ical relationships that differ from those implemented in
the sensory weighting model. For example, the estimate
of head angular velocity elicited from otolith input is
computed as Ax2 ¼ d~gg=dt � ~gg in (Mergner and Glasauer
1999) instead of Ax2 ¼ d~gg=dt � ~ggP þ ~xx; ~ggP

	 

~gg in the

sensory weighting model. Because of the missing
~xx; ~ggP

	 

~gg component, Mergner’s and Glasauer’s (1999)

model does not predict any vertical or torsional VOR

6 We use h ¼ tan�1 Wx;2Ag3;z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gg2x þ ~gg2y

qh
= Wx;1 þ Wx;2Ag3;z~ggz
� �

 with
~gg ¼ g as a first approximation.
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during yaw rotation about an earth-horizontal axis
(Fig. 5D), or any vertical VOR during yaw eccentric
rotation (Fig. 6D, H).

4.2.2 The velocity storage integrator model. The sensory
weighting model formulates how the matrix A ~gg; ~ggP

� �
defining the velocity storage mechanism varies with head
orientation as shown in (D2–D4), augmenting the
empirical formulations of earlier studies (Dai et al.
1991; Gizzi et al. 1994; Raphan and Sturm 1991). If
the idiotropic vector ~ggM ¼ 0; 0;�1½  replaces the vector
~ggP, the matrix A ~gg; ~ggM

� �
detailed in (D6) is structurally

identical to the velocity storage matrix proposed by
Raphan and Sturm (1991).
For both canal and visual angular stimulation, the

two non-diagonal elements in the last column of
A ~gg; ~ggP
� �

and A ~gg; ~ggM
� �

are responsible for the cross-
coupling from horizontal to vertical eye movements
during roll tilt (~ggx ¼ 0), and from horizontal to torsional
eye movements during pitch tilt (~ggy ¼ 0). This cross-
coupling illustrates the tendency of the eye rotation axis
to shift toward alignment with the sensory estimate of
gravity ~gg, as observed experimentally in humans for
canal (Fetter et al. 1996; Zupan et al. 2000) and visual
(Gizzi et al. 1994) stimulation.
The sensory weighting model includes two additional

cross-coupling elements that are not included in the
matrix used by Raphan and Sturm (1991): (1) a pitch-
to-yaw cross-coupling element Wx;2~ggPy ~ggz during roll tilts,
and (2) a roll-to-yaw cross-coupling element Wx;2~ggPx ~ggz
during pitch tilts. These two additional cross-coupling
elements permit the simulation of axis shifts following
both roll and pitch rotations about an earth-vertical axis
in agreement with the characteristics of monkey eye
movements after post-rotatory tilts following a constant-
velocity rotation (Angelaki and Hess 1994; Merfeld
et al. 1993b).

4.2.3 The Observer models. The observer models are
based on the hypothesis that the CNS includes internal
models of sensory dynamics, body dynamics, and
physical relationships (Glasauer 1992, 1993; Glasauer
and Merfeld 1997; Merfeld 1995a, b; Merfeld et al.
1993a; Oman 1982). Another recent model (Angelaki
et al. 1999) uses identical canal–otolith processing to
predict the tilt–translation discrimination.
Although very close to the sensory weighting model,

observer models differ in: (1) their use of internal loops,
(2) their implementation of the gravito-inertial force
resolution mechanism, (3) the absence of the imple-
mentation of an idiotropic vector, and (4) their com-
plexity.
In the sensory weighting model, each internal feed-

back loop described by (7) and (8) is defined by a weight
Wi;j. In the absence of noise, ideally accurate estimates
are obtained for

Pm
j¼1Wi;j ¼ 1 if T̂Ti ¼ Ti. In Merfeld’s

Observer models (Merfeld 1995a, b; Merfeld et al.
1993a), each feedback loop is defined by a gain ki;j
(which do not add to unity). If we neglect the internal
model of physical relationships that transforms sensory
estimates to intermediate estimates (Axi;j ¼ ~xxi ¼ x̂xi), the

simple relationship ki;j ¼ Wi;j= 1�
Pm

j¼1 Wi;j

� �
would

link gains and weights if both models were equivalent.
Therefore, perfect estimates for the sensory weighting
model in the absence of noise would require infinite
gains in Merfeld’s observer model. Similarly, in observer
models with a Kalman filter approach (Glasauer 1992,
1993), feedback loops are defined by a gain ki;j followed
by an additional integration: this integration stems from
the formulation of the system model since Gaussian
noise is assumed to account for the uncertainties in the
model regarding the variable to be estimated. The ad-
ditional integration term also lead to differences in op-
timal estimates compared to the sensory weighting
model and Merfeld’s observer model.
Second, the sensory weighting model implements a

gravito-inertial force resolution mechanism where the
estimate of gravity is not constrained to have a constant
norm. Merfeld’s model (Merfeld 1995b; Merfeld et al.
1995) constrained the internal estimate of gravity to a
constant norm, while Glasauer’s (1992, 1993) model did
not. This difference does not substantially change the
simulated responses except during centrifugation ex-
periments, as previously discussed (Merfeld 1995b;
Merfeld and Young 1995).
Third, the sensory weighting model includes an idio-

tropic vector while Merfeld’s most recent observer
model (Merfeld 1995a) does not. Glasauer’s (1992, 1993)
model did include an idiotropic vector, although in a
different place from that in the sensory weighting model.
Therefore, Merfeld’s model does not for example, pre-
dict sinusoidal vertical and torsional components during
yaw rotation about an earth-horizontal axis. However,
these components are accurately predicted by a more
recent implementation of the observer model (Hasl-
wanter et al. 2000) that includes an idiotropic-like
component.
Fourth, the sensory weighting model implements

visual–vestibular interactions while Merfeld’s (1995a)
observer model implements vestibular-only interactions.

4.2.4 The coherence constraint model. The ‘‘coherence
constraint’’ models (Darlot 1993; Darlot et al. 1996;
Denise and Darlot 1993; Droulez and Darlot 1989;
Zupan 1995; Zupan et al. 1994) are also based on the
concept of internal models of sensory dynamics, body
dynamics, and physical relationships.
Although originally inspired by the coherence con-

straint model, the sensory weighting model rejects the
notion of captor specificity, merging towards the ob-
server approach. In the coherence constraint model, the
reflexive eye movements are compensatory to the sen-
sory estimates of physical variables that principally de-
pend on the sensory signal issued from a ‘‘dedicated’’
sensor as described by (9) and (12). In contrast, the
sensory weighting model uses central estimates of
physical variables to compute the compensatory reflex-
ive eye movements. By definition, all available sensory
information is used to compute a central estimate in a
proportion defined by a sensory weight as described in
(7), and no sensor is considered ‘‘dedicated’’ to a certain
central estimate.

223



Second, the coherence constraint and sensory
weighting models implement different gravito-inertial
force resolution mechanisms. Indeed, the coherence
constraint model adds T̂Ttonâa to Ttonf in (19) and sub-
tracts Tphaf from T̂Tpha~gg in (20) to estimate gravity and
linear acceleration, while the sensory weighting model
adds T̂Tton~aa to Tton f in (19) and subtracts Tphaf from
T̂Tphaĝg in (20). Because of these different choices, a pre-
vious version of the sensory weighting model was able to
accurately predict motion sickness occurrence during
off-vertical axis rotation (Zupan 1995; Zupan et al.
1994), while simulated responses by the original coher-
ence constraint model (Droulez and Darlot 1989) were
not as accurate.
Third, the coherence constraint model does not im-

plement an idiotropic vector and uses ~gg instead of ~ggP in
(12) to predict the intermediate estimate of head angular
velocity Ax2. Because of this choice, the coherence con-
straint model cannot predict the shift of the VOR ro-
tation axis toward alignment with gravity when the
rotational cues are perpendicular to gravity, as observed
experimentally after a 90� post-rotatory tilt following a
yaw earth-vertical axis rotation or during a yaw rotation
about an earth-horizontal axis.

5 Conclusion

The sensory weighting model is a general model of
sensory integration that has been successfully applied to
model canal–vision, canal–otolith, vision–otolith, and
idiotropic interactions and associated eye movements.
The only requirements of the sensory weighting model
are the identification of the sensors involved, their
dynamic characteristics, and the physical relationships
linking the various measured variables. This model of
visual–vestibular interactions successfully simulated re-
flexive eye movements as well as motion and orientation
perception in response to a large variety of 3D stimuli in
darkness and in lighted conditions. This model has been
used to design experiments (Merfeld et al. 1999; Zupan
et al. 2000), since it provides insight into the neural
processes underlying sensory integration.
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Appendix A: Sensory and body dynamics

A.1 Semicircular canal

The head angular velocity x is measured by the
semicircular canals in a head-fixed frame of reference.

The three semicircular canals are assumed to be
mutually orthogonal and aligned respectively with the
head x-, y-, and z-axes7. They are modeled by a diagonal
transfer function matrix Tscc, the diagonal elements of
which are equal to

s2sx;0sx;1= ð1þ ssx;0Þð1þ ssx;1Þ
� 

ðA1Þ

where sx;0 ¼ 6 s and sx;1 ¼ 100 s are the dominant and
adaptation time constants, respectively (Fernandez and
Goldberg 1971). For simplicity and to show that the
internal model does not have to perfectly match the
sensor dynamics to accurately predict experimental
results, the internal model of the semicircular canal
dynamics is modeled by a diagonal transfer function
matrix T̂Tscc the diagonal elements of which are equal to

ssx;0=ð1þ ssx;0Þ ðA2Þ

A.2 Otolith organs

The otolithic primary afferents in monkeys can be
segregated into tonic (‘‘regular’’) and phasic (‘‘irregu-
lar’’) afferents (Fernandez and Goldberg 1976b). The
pool of tonic otolith afferents is modeled by a diagonal
transfer function matrix Tton, the diagonal elements of
which are equal to

1=ð1þ ssotoÞ ðA3Þ

where soto ¼ 0:03 s. The internal model T̂Tton is chosen so
that T̂Tton ¼ Tton.
The pool of otolithic phasic afferents is modeled by a

diagonal transfer function matrix Tpha, the diagonal el-
ements of which are equal to

sa;0 1þ ssa;1
� �

= sa;1ð1þ ssa;0Þð1þ ssotoÞ
� 

ðA4Þ

where soto ¼ 0:001 s, sa;0 ¼ 0:55 s, and sa;1 ¼ 160 s. The
smaller time constant soto ¼ 0:001 s common to both
tonic and phasic units (Fernandez and Goldberg 1976b)
may reflect the mechanics of otolith motion. The
internal model T̂Tphais chosen so that T̂Tpha ¼ Tpha.

A.3 Angular information in the visual system

The present work does not deal with the visual
processing that separates the optic flow into self-motion
and movement of the visual surround (Droulez and
Cornilleau-Pérès 1993; Simpson 1984). The angular and
linear components of any visual movement are assumed

7 The true orientations of the anterior and posterior canal are
approximately rotated 45� and 135�, respectively, from the forward
direction that is orthogonal to the horizontal canal axis (Curthoys
et al. 1977). Anatomical accuracy can be implemented by replacing
the transfer function TðsÞ with one representing the geometry of the
semicircular canals. If the same changes are made in the internal
model TðsÞ, the model-simulated responses will remain completely
unchanged since this is equivalent to a simple coordinate trans-
formation.
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to be available as separate stimuli measured by the visual
system, using retinal slip and image deformation.
The part of the visual system that extracts angular

information from retinal slip is modeled by a 3D transfer
function matrix Trs, the diagonal elements of which are
equal to

1=ð1þ ssrÞ ðA5Þ

where sr ¼ 0:15 s. This time constant has been chosen to
fit eye movements in response to visual surround
rotation (Cohen et al. 1981; Jell et al. 1984).
The part of the visual system that extracts linear in-

formation from image deformation is modeled by a di-
agonal transfer function matrix Tid, the diagonal
elements of which are equal to

1=ð1þ ssvÞ ðA6Þ

where sv ¼ 0:15 s. This time constant has been chosen to
fit eye movements during translation of the visual
surround (Busettini et al. 1994). The internal model T̂Tid
is chosen so that T̂Tid ¼ Tid.

A.4 Eye plant

The dynamics of the eye plant are modeled by a diagonal
transfer function matrix Teye, the diagonal elements of
which are equal to

1=ð1þ sse;1Þ ðA7Þ

where se;1 ¼ 0:003 s is the smallest time constant char-
acterizing the eye plant (Fuchs et al. 1988) since the
other time constants are supposed to be cancelled by a
‘‘neural integrator’’ (Minor and Goldberg 1991). This
eye-plant time constant corresponds to a �50-Hz cutoff
frequency, in agreement with VOR characteristics
during high-frequency sinusoidal rotations up to 15 Hz
in squirrel monkey (Robinson et al. 1986). The internal
model T̂Teye is chosen so that T̂Teye ¼ Teye. By definition,
the eye angular velocity in head e and the motor
command eM sent to the motoneurons innervating the
extra-ocular eye muscles are linked by the relation

e ¼ TeyeeM ðA8Þ

Appendix B: one physical variable and two sensors

Using (5) and (6), the sensory estimate ~xx1 and central
estimate x̂x1 can be computed as

~xx1 �Ax1;1 ¼ T1x1 þ x̂x1 � T̂T1x̂x1

¼ I

I� W1;1 I� T̂T1
� � T1x1 þ W1;2 I� T̂T1

� �Ax1;2� 
ðB1Þ

x̂x1 ¼
I

I� W1;1 I� T̂T1
� � W1;1T1x1 þ W1;2Ax1;2

� �
ðB2Þ

In the sensory weighting model, head angular velocity
and linear acceleration are primarily estimated from
high-pass-filtered sensory signals. If corresponding sen-
sory dynamics are modeled by a first-order high-pass
filter T1 ¼ ss=ð1þ ssÞ � I with T̂T1 ¼ T1, the sensory
estimate ~xx1 is composed of the high-pass-filtered version
of x1 (gain 1) with a time constant increased by a factor
of 1=ð1� W1;1Þ, and the low-pass-filtered second esti-
mateAx1;2 which achieves frequency completion. The gain
of the low-pass-filtered version ofAx1;2 is W1;2=ð1� W1;1Þ;
therefore, for a gain of 1, W1;2 ¼ 1� W1;1 or
W1;1 þ W1;2 ¼ 1. Similarly, the central estimate x̂x1 is in
the high-frequency range composed of a weighted
average of high-pass-filtered signal x1 (gain W1;1) and
intermediate estimatesAx1;2 (gain W1;2), whereas it is equal
to the sensory estimate in the low-frequency range.
In the sensory weighting model, gravity, linear ve-

locity, and eye angular velocity in space are primarily
estimated from low-pass-filtered sensory signals. If cor-
responding sensory dynamics are modeled by a first-
order low-pass-filter T1 ¼ 1=ð1þ ssÞ � I with T̂T1 ¼ T1,
the complementary filter I� T̂T1 is a high-pass filter and
the corresponding feedback loop is an algebraic loop,
thus requiring a small manipulation. We chose to break
the algebraic loop with a low-pass filter of the form
1=ð1þ esÞI, with e ¼ 1 ms. This transfer function has a
cutoff frequency of 160 Hz, so it breaks the algebraic
loop with little or no dynamic influence on the simulated
responses. In this case, the sensory estimate ~xx1 is com-
posed of the low-pass-filtered version of x1 (gain 1) with
a time constant decreased by a factor of ð1� W1;1Þ, and
the high-pass-filtered second estimateAx1;2 which achieves
frequency completion. The gain of the high-pass-filtered
version of Ax1;2 is W1;2=ð1� W1;1Þ. Similarly, the central
estimate x̂x1 is in the low-frequency range composed of a
weighted average of low-pass-filtered signal x1 (gain
W1;2) and intermediate estimatesAx1;2 (gain W1;2), whereas
it is equal to the sensory estimate in the high-frequency
range.
Finally, in the presence of noise n in the sensory sig-

nal, the noise in the sensory estimate is only augmented
by either a low- or high-frequency part of the sensory
neural noise n.

Appendix C: Eye command and eye movements

C.1 The total eye command and eye movements

The total eye command sent to the motoneurons
innervating the eye muscles is the sum of reflexive (eR)
and smooth pursuit (eP) eye commands:

eM ¼ eR þ eP ðC1Þ

Both commands eR and eP lead to eye rotation. The
motor command efference copy êeM is assumed to match
the motor command (êeM ¼ eM). The sensory estimate of
eye angular velocity in head ~ee is obtained from the
efference copy êeM as follows:
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~ee ¼ T̂TeyeêeM ðC2Þ

C.2 The compensatory reflexive eye movements

The reflexive eye command eR is the sum of angular (eA)
and translational (eT) reflexive eye commands:

eR ¼ eA þ eT ðC3Þ

C.2.1 The angular reflexive eye movements. The angular
reflexive eye command eA compensates for head angular
movements (angular VOR) and for angular displace-
ments of the visual surround (OKN and OKAN). This
command is computed using central estimates of head
angular velocity x̂x and eye angular velocity in space r̂r:

eA ¼ �x̂x � r̂r ðC4Þ

During a rotation about an earth-vertical axis, the
angular motor command eA and efference copy of this
motor command êeM are equal, and the intermediate
estimate of head angular velocity Ax2 is equal to the
sensory estimate of head angular velocity ~xx according to
(12). To determine the dominant VOR time constant
during rotation about an earth-vertical axis, we combine
(A8), (C2) and (C4) with (15), (16), and (5) expressed for
both sensory estimates of head angular velocity ~xx and
eye angular in space ~rr. To be able to describe explicitly
the VOR dynamics, we neglected the eye-plant transfer
function Teye, its internal model T̂Teye, and any ‘‘anti-
algebraic loop’’ filters 1=ð1þ esÞI, since their time
constants are at least one order of magnitude smaller
than the dominant VOR time constant (� 20 s):

e ¼ �TVORx with TVORðsÞ

�
s2 1=se;0 þ s
� �

1=se;1 þ s
� �

1=se;2 þ s
� �

1=se;3 þ s
� � GVORI ðC5Þ

Introducing the parameters We ¼ 1þ Wx;1 þ Wx;2 � Wr;1
and j ¼ 2 1� Wr;1

� �
1� Weð Þsr=sx;0, the zero and poles

of TVORðsÞ are equal to

se;0 ¼ sr;1ð1� Wr;1Þð1þ WeÞ=We ¼ 0:05 s;

se;1 ¼
4 1� Wr;1
� �

sr

1þ j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jð Þ2�4 1� Wr;1

� �
j

q ¼ 0:045 s;

se;2 ¼
4 1� Wr;1
� �

sr

1þ j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jð Þ2�4 1� Wr;1

� �
j

q ¼ 20:9 s;

and se;3 ¼ sx;1 ¼ 100 s ðC6Þ

One can notice the quasi-cancellation of the zero se;0 by
the pole se;1, and the lengthening of the dominant VOR
time constant se;2 ¼ 20:9 s when compared to the
dominant canal time constant sx;0 ¼ 6 s (the approxi-
mations are legitimate since least-square error fits
demonstrated that se;2 ¼ 20:9 s and se;3 ¼ 100 s in
Sect. 3). Different weights Wx;1, Wx;2, and Wr;1 for the

yaw, pitch, and roll components of the intermediate
estimates of head angular velocity would lead to
different horizontal, vertical, and torsional VOR time
constants, as observed experimentally (Melvill Jones
et al. 1964).
To minimize the number of free parameters, the rel-

ative contribution of ~ee in both central estimates of head
angular velocity x̂x and eye angular velocity r̂r is consid-
ered to be the same:

Wx;3 ¼ Wr;2 þ Wr;3 ðC7Þ

The relative contribution of canal and otolith informa-
tion in the central estimates of head angular velocity x̂x
and eye angular velocity r̂r is also considered to be the
same:

Wx;1=Wx;2 ¼ Wr;2=Wr;3 ðC8Þ

Using (C7) and (C8), knowing that Wx;1 þ Wx;2þ
Wx;3 ¼ 1 and Wr;1 þ Wr;2 þ Wr;3 ¼ 1, we obtain

Wr;2 ¼ Wx;1 1� Wr;1
� �

= Wx;1 þ Wx;2

� �
ðC9Þ

Wr;3 ¼ Wx;2 1� Wr;1
� �

= Wx;1 þ Wx;2

� �
ðC10Þ

C.2.2 The translational reflexive eye movements. The
translational reflexive eye command eT compensates for
head translation and translation of the visual surround.
This command depends on target distance and target
orientation (Paige 1989; Paige and Tomko 1991; Sch-
warz and Miles 1991; Schwarz et al. 1989; Tomko and
Paige 1992), and is computed using the central estimate
of linear velocity v̂v with a simple cross-product (Viirre
et al. 1986):

eT ¼ �p̂p � v̂v ðC11Þ

where p̂p is a vector aligned with the estimated gaze
direction (p̂p is collinear with i ¼ ½1; 0; 0 for gaze straight-
ahead) and its norm is the inverse of the estimated
distance d from the eye to the target). For simulation in
darkness, p̂p ¼ i=d, with d equal to the distance of a fixed
imaginary target.

C.3 The pursuit system

In the smooth pursuit model of Robinson et al. (1986),
the input to the CNS is a 1D ‘‘reconstructed target
velocity’’ _TT

0
:

_TT
0ðsÞ ¼ _EE

0ðsÞ= 1þ sTe2ð Þ � _eeðsÞ ðC12Þ

where _EE0 is the efference copy of the eye command, _ee is
the retinal slip, and Te2 is the time constant character-
izing the eye plant dynamics. (For simplicity, we
neglected the three ‘‘pure delays’’ of 30 ms, 50 ms, and
80 ms.) An implicit ‘‘neural integrator’’ cancels the
dominant time constant (Te1 ¼ 224 ms) suppress.
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In the sensory weighting model, we implement a 2D
version of Robinson’s model for horizontal and vertical
smooth pursuit. The horizontal and vertical pursuit
systems are considered independent. To account for
passive head movements, we replaced the ‘‘reconstructed
target velocity’’ with the central estimate of target
velocity t̂t:

t̂t ¼ Pyz x̂x þ ~ee� Trsreð Þ ðC13Þ

where x̂x is the central estimate of head angular velocity,
~ee is the sensory estimate of eye angular velocity in head,
re is the opposite of the retinal slip, Trs is the transfer
function of the visual system processing retinal slip, and
Pyz is the projection of the 3D vector onto the (y, z)
plane such that Pyz ½x; y; zð Þ ¼ ½0; y; z to yield horizontal
and vertical – but not torsional – pursuit. The pursuit
system model computes an eye command eP. The
parameter values defining the smooth pursuit model
are identical to those in (Robinson et al. 1986).

Appendix D: The velocity storage Integrator model

In the sensory weighting model, rotational and otolith
information is combined to compute an intermediate
estimate of head angular velocity as shown in (12).
When the sensory estimate of gravity ~gg is not varying, its
derivative d~gg=dt is null and

Ax2 ¼ ~xx; ~ggP
	 


~gg ðD1Þ

With ~gg ¼ ~ggx; ~ggy ; ~ggz
� 

, ~ggP ¼ ~ggPx ; ~gg
P
y ; ~gg

P
z

h i
, and using (D1) in

(15), the central estimate of head angular velocity x̂x can
be expressed as follows:

x̂x ¼ A ~gg; ~ggP
� �

~xx þ Wx;3 ~rr � ~eeð Þ ðD2Þ

A ~gg; ~ggP
� �

¼
Wx;1 þ Wx;2~ggPx ~ggx Wx;2~ggPy ~ggx Wx;2~ggPz ~ggx

Wx;2~ggPx ~ggy Wx;1 þ Wx;2~ggPy ~ggy Wx;2~ggPz ~ggy

Wx;2~ggPx ~ggz Wx;2~ggPy ~ggz Wx;1 þ Wx;2~ggPz ~ggz

2
664

3
775

ðD3Þ

Since non-diagonal elements are non-zero in the general
case, cross-coupling should occur for various orienta-
tions. For roll tilts, the matrix A ~gg; ~ggP

� �
is

A ~gg; ~ggP
� �

¼
Wx;1 0 0

0 Wx;1 þ Wx;2~ggPy ~ggy Wx;2~ggPz ~ggy

0 Wx;2~ggPy ~ggz Wx;1 þ Wx;2~ggPz ~ggz

2
64

3
75

ðD4Þ

Therefore, when a subject is roll tilted, horizontal-to-
vertical and vertical-to-horizontal cross-couplings are
predicted by the sensory weighting model. For pitch
tilts, the matrix A ~gg; ~ggP

� �
is

A ~gg; ~ggP
� �

¼
Wx;1 þ Wx;2~ggPx ~ggx 0 Wx;2~ggPz ~ggx

0 Wx;1 0

Wx;2~ggPx ~ggz 0 Wx;1 þ Wx;2~ggPz ~ggz

2
64

3
75

ðD5Þ

Therefore, when a subject is pitched, horizontal-to-
torsional and torsional-to-horizontal cross-couplings are
predicted by the sensory weighting model. If the
idiotropic vector ~ggM ¼ 0; 0;�1½  replaces the vector ~ggP

in (D3)

A ~gg; ~ggM
� �

¼
Wx;1 0 �Wx;2~ggx
0 Wx;1 �Wx;2~ggy
0 0 Wx;1 þ Wx;2~ggz

2
4

3
5 ðD6Þ

In that case, only horizontal-to-vertical and horizontal-
to-torsional cross-couplings would be predicted.
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